

Circuit Drawing
Website
FINAL PROJECT REPORT

Team Number: SDMAY19-44

Client: Professor Andrew Bolstad

Adviser: Professor Andrew Bolstad

Team Members/Roles:

Joseph Veal: Back End Code Leader

Alexandra Sutton: Meeting Facilitator, Scribe & Back End Code Designer

Lucas Maring: Report Manager, HTML/CSS Leader

Keegan McCarthy: Team Leader, HTML/CSS Designer

Cassandra Plata: Front End Code Leader

Tyler Schurk: Front End Code Designer

Team Email: sdmay19-44@iastate.edu

Team Website: https://sdmay19-44.sd.ece.iastate.edu

Revised: April 22nd, 2019 / Version: 1.0

https://sdmay19-44.sd.ece.iastate.edu/
https://sdmay19-44.sd.ece.iastate.edu/
https://sdmay19-44.sd.ece.iastate.edu/

Table of Contents

1 Introductory Material 4

1.1 Acknowledgement 4

1.2 Problem Statement 4

2 Requirement Specifications 5

2.1 Functional Requirements 5

2.2 Non-Functional Requirements 5

2.3 Use-Cases 6

3 System Design and Development 6

3.1 Design Plan 6

3.2 Design Objectives 7

3.3 System Constraints 7

3.4 Design Trade-Offs 7

3.5 Architecture Diagram and Design Block Diagram 8

4 Implementation 9

4.1 Implementation Diagram and Technologies Used 9

4.2 Rationale for Technology and Software Choices 9

4.3 Applicable Standards and Best Practices 9

5 Testing, Validation, and Evaluation 11

5.1 Test Plan 11

5.2 Unit Testing 11

5.3 Interface Testing 12

5.4 System Integration Testing 13

5.5 User-Level Testing 13

5.6 Validation and Verification
 13

5.7 Evaluation 14

6 Project and Risk Management 14

6.1 Task Decomposition and Roles and Responsibilities 14

6.2 Project Schedule 16

6.3 Risks and Mitigation 19

6.4 Lessons Learned 20

7 Closure Material 20

7.1 Conclusion 20

7.2 Closing Remarks 21

7.3 Future Work 21

8 References 21

9 Team Information 22

List of Figures

Figure 1: Process Flow Diagram

Figure 2: Drawn Prototype of Web Application

Figure 3: Prototype of Web Application

Figure 4: Relationship Between Django and Supporting Languages

Figure 5: Process Flow Relationships

Figure 6: Semester 1 Gantt Chart

Figure 7: Semester 2 Gantt Chart

List of Tables

Table 1: Unit Tests

Table 2: Box Tests

Table 3: System Tests

Table 4: 1st Semester Schedule

Table 5: 2nd Semester Schedule

1. Introduction

1.1 Acknowledgement

We would like to thank our client, Professor Andrew Bolstad, for providing us with this project. We
have created a website application that is both an educational tool for students and developed our
own programming skills in doing so.

1.2 Problem Statement

Professor Andrew Bolstad teaches Electrical Engineering courses for Mechanical Engineers;
however, he is unhappy with his lecture notes concerning circuit diagrams. He is currently using
PowerPoint to create circuit diagrams for his lectures, but he found that it is too time-consuming
and difficult to create the circuits that he wants. Rather than using pre-made circuit components for
his notes, he is using the shapes found in PowerPoint to build his circuits. He wants his circuit
components to have thick borders, so they are clearly visible from the grid background, and he
wants the wires to stay connected to circuit components when the components are moved around.
PowerPoint, however, is unable to function in this way. Furthermore, our client is unable to save
the circuits that he creates in order to use the circuit diagram for other class notes or for
homework; and so he is continuously building new circuit diagrams. This has been a very time
consuming and labor-intensive task for creating his class lectures, so Professor Bolstad is looking
for a solution - a website that is intuitive and easy to use to make visually appealing circuit
diagrams. He wants a circuit diagram that is neat, easy to read, easy to comprehend, and has labels
for each circuit component. In addition, he wants to save these circuit diagrams for later use,
efficiently create any circuit he needs in a timely manner, and possibly simulate the circuits for
educational practices.

Although there are currently circuit drawing websites available that Professor Bolstad can use, no
one website has everything he needs. Therefore, we have created a website application that
combines several features of various websites in order to meet every need of Professor Bolstad and
his students. We created visually appealing circuit drawings using HTML and JavaScript in order to
create a website that can be updated and altered to tailor Professor Bolstad’s needs. Our website
includes easy-to-use rotate and delete features, it has an “About Components” tab that is an
educational tool for the user to learn about various components, it has a “help” tab that explains the
program, and the user will have the ability to place circuit components and wiring on a grid.

This website application is not only a tool for students inside Professor Bolstad’s class to use, but it
is a tool for any students willing to learn about circuit theory. We created both an efficient circuit
drawing website and an educational resource that will teach students the fundamentals of circuit
theory and application.

2. Requirement Specifications

2.1 Functional Requirements

The functional requirements focus on how the systems should perform.

FR.1: The website allows for the placement of circuit elements, such as wires, voltage sources,
resistors, capacitors, and other similar components.

FR.2: Circuit elements should stay connected with a wire if they share the same node and are
dragged around the window.

FR.3: Give users the ability to save created circuits for use later, which will require the
implementation of user accounts.

FR.4: The schematic G.U.I. should display the basic component information next to its element, i.e.
1kΩ next to a resistor.

FR.5: A user can generate a picture of the created schematic to have it saved and downloadable for
use in other documents

2.3 Non-Functional Requirements

The non-functional requirements are primarily focused on the visuals and help portion of the
website.

NFR.1: Switchable white/grid background

A button will exist on the website which will allow for a toggleable grid

NFR.2: Help Menu

A separate web page will have information on how to use the website

NFR.3: All Basic Components Available

The application will feature common electrical components that a user will see in a general
electrical engineering course

NFR.4: Circuits need to be easily legible

Circuits need to be legible within presentations and reports

NFR.5: Educational tab with example circuits

An educational tab will feature equations and behavior of the electrical components that can be
seen in the drawing tool.

2.3 Use-Cases

This website will primarily be used by our client, Professor Bolstad, but it will also have the
potential to be used by any students at Iowa State who are interested in learning more about circuit
theory. Users will be able to create and download circuits for lecture notes, homework, or labs in
order to incorporate visually appealing circuit drawings anywhere. The website also has an
educational tab that teaches users about various circuit components that are available to use in the
website. Furthermore, any outside user will not be able to alter any of the code associated with the
project, so the user will not be able to harm the website in any way. All user accounts will be
securely stored within the database on the server that the website is used on.

3. System Design and Development

3.1 Design Plan

Due to our limited experience with the creation of web applications, our initial work had consisted
of research and brainstorming. One of our first tasks was to take a look at competitors, both paid
and free, to see what the positive and negative features were of each. We analyzed the applications
that we have had to use inside and outside of our classes such as PSPICE, Multisim, and Falstad.
PSpice is a tool used for the simulation of circuits while Multisim functions as both a drawing and
simulation tool. These are heavy, expensive tools that are quite a bit beyond our end-goal for the
drawing tool but they offered insight into how accessible we should make our website. Falstad is a
free web application that some of our teammates have used in the past that functions similarly to
Multisim. Its ease of use was an important takeaway; however, the circuit drawings are not visually
appealing to place into documents.

Moving forward with our project required us to decide what programming language we wanted to
use. Python and JavaScript were the two primary choices due to prior experience. They both feature
extensive packages that would be beneficial for use on our website. With our research, JavaScript
seemed appropriate because of the drawing packages available. However, Python is easier to learn
because of prior experience with C coding, while only one member is familiar with Java. Our group
saw the advantages with both so we decided to meet in the middle and use JavaScript for the front
end functions and Python for the back end functions.

The creation of the website was split up into three categories: HTML/CSS, JavaScript front end
functions, and Python/Django back end functions.

The HTML/CSS code provides the basic visuals for the site. This includes all the area surrounding
the main canvas element in the center of the web page.

JavaScript is used to create the functions for the interactive portion of the website. These functions
allow for components to be placed, dragged, and snapped within the drawing space. We needed to
find a drawing library that could accomplish the listed features and functional requirements. There
were a couple of open source drawing libraries we tested that allowed for this type of functionality,
but eventually settled on using the Fabric.js library after testing.

Our website made use of the Django web framework to manage all back end functions. Anytime a
request is made to the server, Django matches the URL of the request to a view. A view determines

the type of request and generates a response. The response contains any necessary database
information and an HTML template. The view also handles back end processing. The view is where
we chose to create our PNG files from the requested data. Django handles all routing, database
interaction, and all rendering. Django has a large number of modules available to easily implement
difficult web development features. Our site makes use of Django Modules for user authentication
and user session management. The features of Django allowed us to create advanced website
features in a secure and managed environment. Django evaluates all content and requests the
server receives to prevent malicious content from being uploaded. This proved to be a major
developmental advantage for our group.

3.2 Design Objectives

The main design objectives that lead to our project being considered successful are the following:

 Toggleable grid
 A wide variety of components snapping to the grid
 Component Labeling
 Wiring tool
 User Login and Logout
 User Download and Save
 Saved Designs Tab

With one of these design objectives not functioning, it would lead to the whole project being
considered unsuccessful, however, all of these design objectives were achieved and are working as
intended.

3.3 System Constraints

We did not have many system constraints during our project due to our project being web-based,
therefore, the website does not require anything that would require a constraint.

Our client has talked about having a future senior design team continue the work on our project, so
our code needs to be well commented and accessible to our client. We used GitLab for the
integration of our code and the version management of our code.

3.4 Design Trade-Offs

Every component image was created to function on a grid where the origin is at a specific point,
such that the leads of the components are in line with where the wires can be placed. One feature of
our drawing tool was the labeling of components as they serve as an identifier and value for the
component, i.e. R1 = 100 Ω. Our first designs had the label added and grouped together with the
addition of the component. This caused the object’s origin to move position as what was originally
two images, the component, and label, are now considered one image. Whenever the
component/label combination was moved around the space, the leads no longer lined up with the
grid. To fix this, labels are no longer added at the same time as the components. Rather, a separate

button is used to add a label. This adds an extra step in the circuit creating process but makes
dragging components around the drawspace much easier.

The website is intended for ISU servers, as opposed to an Amazon or Microsoft server. It requires a
dedicated virtual machine with web access. ISU virtual machines have specific amounts of memory,
but we are allowed to access them for free. The memory restriction is important because users of
our website save images to our machine. Django’s file field for a SQL database is just a reference to a
local file, so all images must be saved to the virtual machine. There would be a cost associated with
a server on Amazon or Microsoft services, but we would be able to expand the memory as needed.
Another tradeoff with an ISU server is the amount of RAM that our website will have. We keep track
of user sessions using cookies. These cookies are stored in RAM. If the website were to gain
popularity, an ISU virtual machine may not be able to support the website.

3.5 Architecture Diagram and Design Block Diagram

The diagram below generally outlines the structure in which our website interacts between the
front end and back end. As a user interacts with any kind of circuit drawing, it is handled purely by
the front end with the use of JavaScript functions. As the user attempts to save and/or download
their finished image, the figure below outlines how the Django framework handles the user
authentication and passing of information.

Figure 1: Website Architecture and Django

4. Implementation

4.1 Implementation Diagram and Technologies Used

To manage our code, our team used Git. Git allowed us to easily control versions of our project and
a code manager had to approve changes before they were made to our main repository. Git is a
commonly used and free tool that can be downloaded on any operating system. Each team member
has a Git repository on their computer that interacted with an online repository on GitLab.

Our team also made use of Django as previously described. Django completely managed our website
back end and helped us accomplish the following:

 Routing
 HTML Rendering
 Database Interactions
 User Authentication and sessions
 Data processing

4.2 Rationale for Technology and Software Choices

HTML is an important tool in any web development project. HTML allows a developer to design the
basic layout of a website. It has specific tags that are used to determine the section of a website for a
piece of text. It is also used to add links and many other basic functions of a website. In our case,
HTML exists inside of a Django file known as a template. The file is then rendered in the browser of
the user once the Django view has finished all back end processing.

Our team felt the best option to manage our back end was Python because Python is an easy to
learn language. Python is an interpreted language which makes it difficult to debug at times;
however, it does not require a compiler which was advantageous for our group. This is an
advantage to us because it allows Python to function as a scripting language. Python also has a wide
range of modules that our team used to efficiently run backend functionality.

The use of the Fabric.js drawing library was an easy choice after reading its documentation and
testing the pre-built demos. A standard canvas will allow the placement of images but has limited
interaction. Fabric heavily expands the capabilities of the HTML Canvas and drastically simplifies
the code. Your average electrical / software engineer should be able to look at the code and more
easily understand what a function is accomplishing. This makes the creation and modification of the
drawing systems a much simpler process compared to doing so without the library.

4.3 Applicable Standards and Best Practices

A project of this caliber most often includes functional requirements and nonfunctional
requirements. In many cases, these requirements are given by the user. Some examples of these
types of requirements are protocols and security standards. This project has given our team lots of
freedom to choose protocols and procedures that we must adhere to. On the other hand, since we

are doing a web development project, there are certain protocols that we must follow in order to
have our application operational.

One of the protocols that are required for our project is the HTTP protocol. This is a standard web
protocol that allows for web development languages to be sent as data over the internet. The HTTP
protocol helps us with verification. HTTP has a variety of status codes that allowed us to debug
issues by reading the server log. Another protocol our team needs to keep in mind is the IP
protocol. This protocol will be important when we are testing and setting up the server. The IP
protocol assigns our server an address and allows other machines to make HTTP requests to it.
Once we migrate our server we will have a permanent IP address, but while we are in testing we
will take advantage of one of the localhost ports for our HTTP requests. These protocols are more
important for networking than for web development; however, they must be followed if our project
is to work correctly. To automatically handle these protocols, we have investigated web
development techniques that will help us meet our nonfunctional requirements.

Our group did extensive research to determine which coding languages and frameworks we should
utilize to develop the best version of our project. Our conclusion led us to use Python and the
Django framework to manage the back end, and JavaScript to create a GUI for our front end. Using a
framework allowed us to control the database and any routing that the web server we will be using.
The management of routing allows us to adhere to the standards of the IP protocol and helps us
achieve our nonfunctional and functional requirements. Simply choosing standard web
development languages will allow us to use the HTTP protocol correctly.

 Our team was required to follow security protocols. A simple and very effective protocol that will
allow us to protect our website is the OAuth protocol. Once our group determined that this protocol
was needed, signing into the website is required to access the content. In order to sign into the
website, the user needs to present a valid username and password. The Django framework also
allows us to use modules to perform security functionality and the framework does have an OAuth
module available

When it came to determining the best way to layout all of the various requirements needed for the
website we used the following standard, “IEEE 830-1998 - IEEE Recommended Practice for
Software Requirements Specifications.” This standard lays out different ways to gather the software
requirements and make plans on meeting these requirements. This was vital for the beginning
stages of the project as it allowed the group to communicate with Professor Bolstad more
effectively.

5. Testing, Validation, and Evaluation

5.1 Test Plan

Functional Testing

The following tests have been separated into three categories. Those categories are unit tests, box
tests, and system tests. Each test case includes a procedure and status. These cases are designed
for basic layout and design.

5.2 Unit Testing

Unit Tests (Table 1)

Number Test Desired Outcome Status

1 Page Links Clicking links yield HTTP
200 Status Code

Success

2 GUI Drag and Drop Dragging a component
places it on GUI

Success

3 GUI Wires Wires must move with the
object when the object is
dragged

Failed

4 GUI Background Background must be clients
desired color

Success

5 GUI Component Menu GUI component menu can
place parts into GUI and all
parts are easily visible

Success

6 GUI Hotkey
Placement

Pressing one of the Hotkeys
displays a component on the
GUI

Not Implemented

7 Download Button Download button results in
a file that matches the user’s
design

Success

8 Save Button A record of the current
circuit can be found in the
database

Success

9 Help Menu Help menu appears when
clicked, HTTP 200 Status
code returned

Success

10 Sign in Sign in allows for
authentication, rejection,
and user creation

Success

11 New Page Rendering Django server displays the
result of last HTTP Request

 Success

12 Database Database features can be
saved and accessed in HTML
templates

Success

5.3 Interface Testing

Box Tests (Table 2)

Number Test Desired Outcome Status

1 GUI Schematics can be
created with all
parts labeled and
mobile

Success

2 Authentication Correct Username
and Password allow
for the viewing of
old schematic

Success

3 Homepage The homepage
allows for GUI
creation, site
navigation, and
download
capabilities

Success

4 Backend The back end is able
to process any data
necessary and
control website
views

Success

5.4 System Integration Testing

The system integration testing for this project was minimal seeing as though it was all web
development. Our main concerns with this project involved integrating the JavaScript front end
functionality with the Django server, and the communication with the back end. Throughout the
development of the features of this website, we used Google Chrome but also ensured that the
libraries, layout, and functionality would also be working with any web browser that a user may
encounter.

5.5 User-Level Testing

We believe that the most effective test results are in the form of user feedback. Our team obtained
feedback from several sources and the following paragraphs will describe our process for collecting
user feedback, the positive user feedback and the negative user feedback.

To collect feedback from users, we asked our users to attempt to make a circuit with no knowledge
of the website. We asked them to make accounts and save a circuit to their account as well. We
started by giving very little help with creating a circuit to see where they encountered difficulties
and confusion. We then provided them feedback when they became stuck, so we could see how
other they liked other parts of the website as well. This process helped us develop our “help” tab
because this tab gave a general outline on the best way to create a circuit. We tested several
students in the TLA and our client. Their feedback will be described in the following paragraphs.

Some of the positive feedback we received was that our drawspace was easy to see and our
components were easily visible. Users said that our site was easy to navigate and contained all the
necessary components. They thought that our implementation of sessions made it easy for them to
access older circuits. Users enjoyed our pleasing design and our component placement features as
well. Our site was kept organized by having only essential features, which reduced user confusion.

Moreover, we received some constructive feedback from our users on how the website could be
improved in the future. The users struggled to grasp how to use some of our features without an
explanation. They thought an instruction help page was needed to get started. We also noticed that
they had a hard time understanding how to use our snap feature. To combat this issue, we created a
process that will produce high quality, presentable circuits. Some other user’s feedback involved
the background color of the images being saved. When previewing a circuit in chrome, there is no
white background and that makes the circuit very difficult to see. Users would have also liked to be
able to edit circuits at a later time. We currently have accessible PNG files of their saved schematics.
These changes will help us improve the project in the future.

5.6 Validation and Verification

Numerous team members, as well as our advisor/client, Professor Andrew Bolstad had agreed that
our unit tests had passed. We noted that the next part of our validation and verification needed the
approval of other users.

We believe, as mentioned above, that the user’s validation in the effectiveness of our final product is
pivotal, and therefore we worked to try to implement what both we and our peers and users would
want in a circuit drawing website. We had implemented as many of the features that we could and
passed our unit testing criteria to both our team’s, our client’s, and our peer’s satisfaction.

5.7 Evaluation

The final product that we have ended up with allows us to believe that we have a functional final
product, but there can be improvements made for an easier user experience. After initial testing,
and realizing that the best way to create the circuit was through a specific process, we had worked
to alleviate the choppy experience with some fixes with the drawing GUI. After fixing prominent
issues that we have seen, we recognize that the user experience can be made easier with less mouse
moving if we had created hotkeys for the user to generate wires, and delete components.

We also recognized that we did not meet all of our stretch goals of simulating, auto wire remapping,
and editable saved designs.

 6. Project and Risk Management

6.1 Task Decomposition and Roles and Responsibilities

In the early planning stages for the project, we split up into three groups of partnerships to work on
different parts of the project. Tyler and Cassie were tasked with working on the front end and
drawspace design. Alex and Joe worked on the back end and Django server work. Keegan and Luke
worked on the HTML/CSS part of the project.

As time went on throughout the project life, there were different variations of the groups and some
team members spent time working with other groups. This allowed for the needed flexibility to put
the necessary work hours towards different parts of the project that needed it.

Furthermore, below are the individual responsibilities for each member of the project:

Keegan: Team Leader, HTML/CSS Designer

 Creating and proposing various different schedules
 Working on HTML/CSS
 Creating all on the vector copies for the components used
 Developing JavaScript functions for each component to lock on to the grid properly

Alex: Meeting Facilitator, Scribe, Back End Code Designer

 Communicating with Professor Bolstad
 Setting up meetings each week and reserving rooms
 Developing and designing back end user authentication

Luke: Report Manager, HTML/CSS Leader

 Creating weekly status reports for the group
 Uploading important files to the project website
 Designing HTML/CSS part of the website

Cassie: Front End Code Leader

 Designing front end functionality
o Wiring tool
o Snappable objects
o Drag and drop
o Component Labeling

 Migrating all files to the master branch

Tyler: Front End Code Designer

 Designing front end functionality
o Wiring tool
o Snappable objects
o Toggleable grid
o Rotation lock
o Drag and drop
o Component Labeling

Joe: Back end Django Code Leader

 Developing back end Django server setup
 Creating Django views to control file service and back end processing
 Working on image saving feature
 Creating tutorials to help each group member run the server locally

6.2 Project Schedule

Table 4: 1st Semester Schedule

1st Semester DURATION
(days)

START DATE END DATE DESCRIPTION TITLE

9/23/18 9/29/18 Complete Project Plan version #1; Determine
Coding Languages to be used

6

9/30/18 10/6/18 Meet with Andrew Bolstad; Learn the basics of
Python, JavaScript, HTML, and CSS

6

10/7/18 10/27/18 Learn Python, JavaScript, HTML, and CSS 20

10/28/18 11/10/18 Prototype of the website, using HTML and CSS;
Back end development

13

10/28/18 11/10/18 Back end development Django 13

11/11/18 12/1/18 Front end GUI development. Circuit
component drawing, drag, and drop

20

12/2/18 12/15/18 Complete prototype I, Testing with Professor
Bolstad and random users; Gain feedback and
make improvements to Prototype I

13

Figure 6: Semester 1 Gantt Chart

Table 5: 2nd Semester Schedule

2nd Semester DURATION
(days)

START DATE END DATE DESCRIPTION TITLE

1/21/19 2/8/19 Finalize Prototype I, Begin work on Prototype
II, Regroup with team and Professor Bolstad

18

1/27/19 4/10/19 Work on wiring tool functionality 73

1/28/19 3/30/19 Picture Exporting 61

1/28/19 4/8/19 Work on back end user authentication 70

2/4/19 4/1/19 Update HTML/CSS formatting as needed 56

2/17/19 2/23/19 Bring all progress together into Prototype II 6

2/17/19 3/10/19 Create a toggleable grid 21

2/24/19 3/16/19 Test Prototype II, gain feedback from
Professor Bolstad and peers and implement
feedback

20

3/17/19 4/13/19 Design and create all vector copies of
components and JavaScript functions

27

3/24/19 4/13/19 Implement the help tab and basic tutorial
throughout the website

20

4/8/19 4/13/19 Merge Everything to master and begin round 3
of testing

5

4/15/19 4/22/19 Work on Final Project Poster 7

4/22/19 4/29/19 Work on Final Presentation and Final Report 7

4/14/19 4/30/19 Finalize website application based on
feedback

16

Figure 7: Semester 2 Gantt Chart

6.3 Risks and Mitigation

A big concern that hindered our plan is the fact that we are creating a web application with coding
languages Python, JavaScript, and HTML. As a team consisting of all Electrical Engineering majors,
we do not have a lot of experience using these languages. As a result, our project team needed to
put in the additional time learning these languages on our own time. While we were confident that
we can design the circuit drawing web application using these languages, we needed to plan for the
time needed to both learn the languages and complete the project.

Furthermore, the long term feasibility of achieving a fully functional circuit simulator was certainly
a stretch goal from the beginning. Proper circuit simulation will be a lengthy process and will be
dependent on the progress of the circuit drawing functionality. The circuit drawing functionality is
the most important part of the project and will be completed in its entirety before working on
simulation. It is concerning that the website application will be incomplete if incapable of
simulation; however, this might be something another senior design team can complete in the
future.

Our last main risk is the lack of security implementation. By the end of the project, we implemented
basic security into the website, which lead to Iowa State raising concern to make the website public.
Further security measures would prevent malware from harming Iowa State’s servers. This is
something that our group was not able to accomplish and that a future senior design team could
implement.

6.4 Lessons Learned

After working on this project for the past two semesters we learned various lessons. The first
lesson, being that we needed to stick to our proposed schedule more effectively. There were times
when things fell behind due to workload in other classes that we are taking. As a result of not
sticking to the schedule on time, certain functionality is not perfected to the extent that we may
have liked.

The second lesson learned would be having a group of all electrical engineers working on a
software engineering project. This made the whole project a lot more difficult due to each group
member having to self-teach themselves different coding languages to get the project done. Looking
back on it now, we realize this was not the best decision to pick this project, however, we are still
proud of what we accomplished while self-teaching ourselves the whole time.

7. Closure Material

7.1 Conclusion

There exist many different circuit applications, but they are often weighed down with heavy
processor requirements and expensive licensing costs. In addition, some of these applications are
not free and intuitive to use. Therefore, we created an educational, easy to use, and free web-based
application that will eliminate these issues. Our website features an appealing circuit drawing tool

that can be used to teach students who are interested in circuit design and theory. We also added
educational features that allow students to better understand the circuits they created using our
website.

We divided the work accordingly so each member learned how to utilize both Python and
JavaScript. This gave each member thorough experience with software design, and it allowed
everyone to follow the progress of the project. Furthermore, we had weekly meetings in order to
discuss the team’s accomplishments, schedule, and issues concerning the various components of
the project. This constant communication ensured an efficient design process and it allowed us to
stay on top of any issues in order to resolve them as soon as possible. Although we are all electrical
engineering students, our planning and organization skills are exactly what this project needed to
solve this software design problem.

We believe that we accomplished a lot as a group these past two semesters, completing many of the
deliverables set at the beginning of the project. As all projects go, there was more to be
accomplished than we actually completed, which is talked about in the coming sections.

7.2 Closing Remarks

Despite being a group of six electrical engineers, each member was able to learn how to reach the
goals that we have set for the project. We learned various new skills as well expanded on previous
skills acquired throughout our college career in order to create this website from scratch. As a team,
we have completed the primary requirements set by Professor Bolstad and hope that this final
project is exactly what he needed. Even though improvements and additions can be added to the
final project, the circuit drawing website is a very functional tool that any user can experiment with
to learn more about circuit theory.

7.3 Future Work

In the above section in which we discussed the Evaluation of our Testing portion, the last note that
we recognized was that there were stretch goals that we could not meet in time. The future work
for this project may include the ability to simulate finished circuits, the ability to edit old saved
designs, and integration with the React front end framework for a cleaner and more visually
appealing and dynamic website aesthetic, as well as wire auto-routing. These tasks can be carried
on to future senior design teams moving forward.

Below is a demo link for our latest working version of our project:

https://youtu.be/Fp9jIvC19Cg

8. References

“Django.” Documentation for Django.contrib.auth.forms,
 docs.djangoproject.com/en/1.8/_modules/django/contrib/auth/forms/.

https://youtu.be/Fp9jIvC19Cg

“Django.” Documentation for Django.contrib.auth.models,
docs.djangoproject.com/en/1.8/_modules/django/contrib/auth/models/.

Smith, Caleb. “Learning Django.” Lynda.com - from LinkedIn, Lynda.com, 22 Jan. 2018,
 www.lynda.com/Django-tutorials/Learning-Django/656811-2.html.

IEEE 830-1998 - IEEE Recommended Practice for Software Requirements Specifications

9. Team Information

Luke Maring - HTML/CSS

Email: Luke.maring43@gmail.com

Keegan McCarthy - HTML/CSS

Email: keeganmccarthy27@yahoo.com

Cassie Plata - Front End

Email: cassieplata@gmail.com

Tyler Schurk - Front End

Email: tylerschurk@gmail.com

Alex Sutton - Back End

Email: asutton512@gmail.com

Joe Veal - Back End

Email: joeveal33@gmail.com

http://www.lynda.com/Django-tutorials/Learning-Django/656811-2.html
mailto:Luke.maring43@gmail.com
mailto:keeganmccarthy27@yahoo.com
mailto:cassieplata@gmail.com
mailto:tylerschurk@gmail.com
mailto:asutton512@gmail.com
mailto:joeveal33@gmail.com

